Multiple Integrals and their
Applications
GBO0

4.1 INTRODUCTION TO DEFINITE INTEGRALS AND DOUBLE INTEGRALS
Definite Integrals

y
The concept of definite integral
I: f (x)dx ..(1)
is physically the area under a curve y = f(x), (say), the A
x-axis and the two ordinates x = aand x = b. It is i
defined as the limit of the sum o a
f(x)0x, + f(X,)0x%, + ... + f(X,)dX,

when n - o and each of the lengths &x,, &X,, ..., X, o ) X
tends to zero. Fig. 4.1

Here dx,, dX,, ..., 0X, are n subdivisions into which the range of integration has been
divided and xy, X,, ..., X, are the values of x lying respectively in the Ist, 2nd, ..., nth
subintervals.
Double Integrals 4
A double integral is the counter part of the above A
definition in two dimensions. . i i

Let f(x, y) be a single valued and bounded function of { i
two independent variables x and y defined in a closed 'E’A( )
region A in xy plane. Let A be divided into n elementary il /
areas 0A;, 0A,, ..., OA,. ’

Let (x,, y,) be any point inside the rth elementary area 0 X
OA,. Fig. 4.2

Consider the sum

n
f(2) 0+ 1 (. y2) 8 + .+ 1 (%0, 90) 84, = 3 1 y0)8A, Q)

Then the limit of the sum (2), if exists, as n - o and each sub-elementary area approaches
to zero, is termed as ‘double integral’ of f(x, y) over the region A and expressed as J'JA' f (x,y)dA :
1



thus  J[T0eY)dA= LS lxy)oA - (3)

3A, -0

Observations: Double integrals are of limited use if they are evaluated as the limit of the sum. However, they
are very useful for physical problems when they are evaluated by treating as successive single integrals.

Further just as the definite integral (1) can be interpreted as an area, similarly the double integrals (3) can be
interpreted as a volume (see Figs. 5.1 and 5.2).

4.2 EVALUATION OF DOUBLE INTEGRAL
(x, y)dx dy

is discussed under following three possible cases:

Evaluation of double integral I{J

y-axis
N

Case I: When the region R is bounded by two continuous
curves y = ((x) and y = ¢(x) and the two lines (ordinates)
x=aand x =h.

In such a case, integration is first performed with
respect to y keeping x as a constant and then the
resulting integral is integrated within the limits x = a
and x = b. o

Mathematically expressed as:

I;f(xly)dxdy- j(jy o) (x,y)dy)dx

Geometrically the process is shown in Fig. 5.3, y = axis
where integration is carried out from inner rectangle L XE ) Xy
(i.e., along the one edge of the ‘vertical strip PQ’ from - p
P to Q) to the outer rectangle.

Case 2: When the region R is bounded by two continuous
curves X = @(y) and x = Y (y) and the two lines (abscissa)

y=aandy=h. y=a
In such a case, integration is first performed with
respect to Xx. keeping y as a constant and then the [6) X;axis
resulting integral is integrated between the two limits Fig. 4.4
y=aandy=h.
Mathematically expressed as:
y=b (k= w(y) 0 X
”f(x y)dxdy— j H x,y)ddey y=a
X=6(y)

Geometrically the process is shown in Fig. 5.4,
where integration is carried out from inner rectangle
(i.e., along the one edge of the horizontal strip PQ y=»
from P to Q) to the outer rectangle.

Case 3: When both pairs of limits are constants, the region o x=a x=b xaxis
of integration is the rectangle ABCD (say). Fig. 4.5
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In this case, it is immaterial whether (X, y) is integrated first with respect to x or vy, the

result is unaltered in both the cases (Fig. 5.5).

Observations: While calculating double integral, in either case, we proceed outwards from the innermost
integration and this concept can be generalized to repeated integrals with three or more variable also.

N1+x2 1
Example 1: Evaluate J'J' -(m)dydx

Solution: Clearly, here y = f(x) varies from 0 to /1 + x2

and finally x (as an independent variable) goes between 0
to 1.

0.2 1 0
= 7d d
| ID (1o )+ y2 VA

: [ /1+%2 1 O . ,
_J)g azTyzddeX,a —(1+X) o | 2,0)

(0, 0) (10) (1.732,0)

‘ragtan‘l ya dx Fig. 4.6
.r \/— tan‘loadx

mé‘
-ogdx=§Hog{x+W}§

(L O
_[) J1i+x2 4
LS
=—log(l++/2
;0g(1+2)
Example 2: Evaluate Hezx+3y dxdy over the triangle bounded by the lines x =0, y = 0 and
X+y=1

Solution: Here the region of integration is the triangle OABO as the line x + y = 1 intersects
the axes at points (1, 0) and (0, 1). Thus, precisely the region R (say) can be expressed as:

0<x<1,0<y<1-x (Fig5.7).

Y
| = [ [+ dxdy i
0 N
R BN\
1[1x 0 :‘. 15
- e2x+3ydy X x=0 .
Ig H -:
1 -X >
— D]- 2X+3y |j O
= e dx (,0)
B8




1
=% A (e3‘x —ezx)dx
:1@3—x _ez_xﬂ

38-1 2H

_1|I|2 eZD 3 1|j:|
= + - +=

3 ZH% 2

Example 3: Evaluate the integral [[Xy(x+y)dxdy over the area between the curves y = x
R
and y = x.

Solution: We have y = x? and y = x which implies Y

x?—x=0 ie. eitherx=0 or x=1
Further, if x=0theny =0; if x =1 then y = 1. Means the y=x2

two curves intersect at points (0, 0), (1, 1).

O The region R of integration is doted and can be

expressed as: 0 < X <1, X<y <X

0 jgxy(x+y)dxdy :Jj%l::xy(x+y)dy§dx ,-RVL‘F;

‘r?zy xL Ddx Fig. 4.8

2 2
Example 4: Evaluate ”(x+y)2 dxdy over the area bounded by the ellipse %+z—2:1.

[UP Tech. 2004, 05; KUK, 2009]

2 2

Solution: For the given ellipse Z +Z—2 =1, the region of integration can be considered as
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52
bounded by the curves y = =b,[1- a7~’ y= b‘/l— v and finally x goes from — ato a

N=ara

0 I—”(x+y dxdy = I H[ P x2/a2(x +y? +2xy)ddex

b1 x2/a2 v d |:|d
+ X

J. gb«/l x2/a2 yz) yH
[Here [2xydy =0 as it has the same integral value for both limits i.e., the term xy, which is
an odd function of y, on integration gives a zero value.] Y

a by/1- x2/a2

:4.[Hr (x2 +y2)dygdx

. "4ID<2b§l LSt S

On putting x = asin@, dx = acosO dO; we get

/2 3
| = 4b-[ aazsinzecose) +%cos36§acosede
0

- V205 02 204 0% D
—4ab.L B sin 0cos20 + 3 cos eade

Lp ig g

Now using formula I sinP xcos!xdx = 2
0 ‘Dp+q+2d
2

On+1 5

2

and I cosxdx = |2 DT _ _

0 Eh+2d 2, (in particular when p=0, g=n)

0o 0O

2w el

H
J'J'(x+y)2dxdy=4ab%2 - 3 o E

N | W




O JmJm 3m 0
O, 5 5 o o VO
=dap-2- 2 4222 7 i (B
O 221 3 221 Q ‘|0
0 0

2 Teb(a® +b?)

= 4ab [1—
016 16 E 4

ASSIGNMENT 1

dxdy

1. Evaluate J-J-\/l x2

2. Evaluate [ [ xy dxdy, where A is the domain bounded by the x-axis, ordinate x = 2a and
R

the curve x? = 4ay. [M.D.U., 2000]

3. Evaluate ”eax"bydydx , Where R is the area of the triangle x =0,y =0, ax+ by =1 (a > 0,
b > 0). [Hint: See example 2]

21 12
4. Prove that ”(xy +e’)dy dx =”(Xy +ev)dxdy
13 31

5. Show that J-dXJ- =) dyij'dyj'

6. Evaluate g g e ) dxdy [Hint: Put x3(1 + y?) = t, taking y as const.]

4.3 CHANGE OF ORDER OF INTEGRATION IN DOUBLE INTEGRALS
The concept of change of order of integration evolved to help in handling typical integrals
occurring in evaluation of double integrals

When the limits of given integral jaq qx) (x,y)dydx are clearly drawn and the region

of integration is demarcated, then we can well change the order of integration be performing
integration first with respect to x as a function of y (along the horizontal strip PQ from P to
Q) and then with respect to y from c to d.

Mathematically expressed as:

I—J'J;_ ) f (x,y)dxdy.

Sometimes the demarcated region may have to be split into two-to-three parts (as the case
may be) for defining new limits for each region in the changed order.
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1 J1-x?
Example 5: Evaluate the integral [ [ Y’dydx by changing the order of integration.
0 0

Solution: In the above integral, y on vertical strip (say PQ) varies as a function of x and then
the strip slides between x =0 to x = 1.

Here y = 0 is the x-axis and y =/1-x2 i.e, x? + y? = 1 is the circle.
In the changed order, the strip becomes P’Q’, P’ resting on the curve x =0, Q’ on the circle
x =,/1-y? and finally the strip P’Q’ sliding between y =0to y = 1.

1%
1 , -y 0O
I =[y?0 [ dxgdy L@
D JO' |:| JO' |:| ;’. .'":, I
1 : P
I =[y [x]ﬂdy - N y=0 _
0 P | >X
1 1 ]
I:Iyz(l—y2)2 dx x=1
0
Substitute y = sin 6, so that dy = cos 0 d0 and 0 varies from 0 to %[ x=0
. Fig. 4.10
2
= [sin®@cos* 6dO
0
_-)@e-)n_n
412 2 16
gn
0. 2 gipp _(P-D(P-3)..@-D@-3) =
sinBcosBdo = , only if both p and g are + ve even integers]
E{ P+q)p+qg-2)...... 2

4a 2Jax

Example 6: Evaluate -!; X‘[z dydx by changing the order of integration.
Za

Solution: In the given integral, over the vertical

strip PQ (say), if y changes as a function of x such
2

. X .
that P lies on the curve Y =£ and Q lies on the

curve y = 2{/ax and finally the strip slides between
x =0to x = 4a.

X2 )
Here the curve Y =— i.e. x% =4ay is a parabola

4a
with
y=0 implying x=0 g
y =4a implying x==z*4a i Fig. 4.11



i.e., it passes through (0, 0) (4a, 4a), (- 4a, 4a).
Likewise, the curve y =2{ax or y?=4ax is also a parabola with
x=0 0 y=0andx=4a O y==x4a
i.e., it passes through (0, 0), (4a, 4a), (4a, — 4a).
Clearly the two curves are bounded at (0, 0) and (4a, 4a).

[ On changing the order of integration over the strip P'Q’, x changes as a function of y

such that P’ lies on the curve y? = 4ax and Q’ lies on the curve x? = 4ay and finally P’Q’ slides
between y =0to y = 4a.

:2@ O
whence I=I O .. dxody

0 =X
U

:Jja[x]iz/@ dy
4al]
J;> 52\/7_461 Edy
o 2 o
=l -2t
H 2 H

_32a% _ 168 _ 16a°

3 3 3
: I (x2+y2)dxdy . : .
Example 7: Evaluate 3 by changing the order of integration.

a

= 4—*3{5 (4a)z - 1—;71(4:71)3

Solution: In the given integral jgﬂl—/a(xz +a2)dx dy, y varies along vertical strip PQ as a

function of x and finally x as an independent variable varies from x =0 to x = a.
Here y = x/a i.e. x = ay is a straight line and y = ./x/a, i.e

A y=vVxia

X = ay? is a parabola. \
For x=ay; x=0 0 y=0andx=a O y=1. 1 y=1

Means the straight line passes through (0, 0), (a, 1). oz o
Forx=ay? x=0 0O y=0andx=a 0O y=%1

Means the parabola passes through (0, 0), (a, 1), (a, — 1).. ol P y=0

Further, the two curves x = ay and x = ay? intersect at common ©0.0) >X
points (0, 0) and (a, 1).

On changing the order of integration, x=a

a Jx/a y=1[] _x=ay 0
LL/a (x2 + yz)dxdy =J;:o a(:ayz (x2 + yz)dxdya ~—

(at P’) Fig. 4.12
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1D(3

= H—+xy a dy
-f % a)sl)‘ + ay-yzé‘ o5 (@) +ay wz%ﬂy
+ @y?’—%syﬁ—ay“aiy

y’ ay5ﬂ

_ AOE

[

= H’E_ a3_
%_ S5 Q)

Dja:4 3><7H S %

=822 8 (50,7)
28 20 140

a 2
Example 8: Evaluate II %dydx.
0 Jvax y*—asXx
Solution: In the above integral, y on the vertical strip (say PQ) varies as a function of x and

then the strip slides between x =0to x= a
ax is the parabola and the curve y = a is the straight line

Here the curve y =Jax ie, y>=
On the parabola, x=0 0 y=0,x=a O y==a ie., the parabola passes through points

(0, 0), (a, @) and (a, — a).
On changing the order of integration,

MR y2 EU
I = & ————dxLdy
‘IO a(?@? V't -ex g y-axis
(a, a)
2 TS y=a
a|:| Y2 0
. I &
0 )
BB F B ]
a y:(_) )
0O > X-aXIS
2 (0! O) 4]
ayZ . X |:yF I>I<
:J;;%ln_l Dyz DD dy |>|< (a’_a)
O O
g H;E@ Fig. 4.13
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ayz . .
:J(') ;@ln‘ll—sm‘logdy

ay? g mye[
:J. __dy:__
o a 2 2a30

T2
6

1 2-x
Example 9: Change the order of integration of [ [ XY dydX and hence evaluate the same.
0 x?

[KUK, 2002; Cochin, 2005; PTU, 2005; UP Tech, 2005; SVTU, 2007]

2-x 0
Solution: In the given integral IEI xydyadx, on the vertical strip PQ(say), y varies as a
04 x?

function of x and finally x as an independent variable, )(
varies from 0 to 1.
Here the curve y = x? is a parabola with B(0, 2) y=2
y=0 implying x=0 _ ; 0
y=1 implying x==1_ . N o] ¥=2
i.e., it passes through (0, 0), (1, 1), (- 1, 1).ﬂ A | y=1
Likewise, the curve y = 2 — x is straight line Sl | AING D
with P79 y=2-x
y=00 x=2[ L y=0 \(2.0) _
y=10 x=1( 0 N
y=2 0 x=0f L x=1
i.e. it passes though (1, 1), (2, 0) and (0, 2) Fig. 4.14

On changing the order integration, the area OABO is divided into two parts OACO and
ABCA. In the area OACO, on the strip P’Q’, x changes as a function of y from x=0to x = ﬁ :
Finally y goesfromy=0toy = 1.

Likewise in the area ABCA, over the strip p”Q”, x changes as a function of y from x =0 to
x = 2 -y and finally the strip P”Q” slides between y =1toy = 2.

0 }E?xy dedy + }E f_;/(y dedy
oulo 1-0
2|20
[rsl

2
3 4
:L%yz_ﬂﬂ_ﬁ
6 2 3 449
-1,5._3
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1 J2-x?
Example 10: Evaluate ;dydx by changing order of integration.
o)k xZ+y?

Soluton: Clearly over the strip PQ, y varies as a
function of x such that P lies on the curve y = x and Q
lies on the curve y=4/2-x2 and PQ slides between
ordinates x =0 and x = 1.

The curves are y = x, a straight line and y = /2 - x? ,
i.e. X2+ y2=2 acircle.

The common points of intersection of the two are
(0, 0) and (1, 1).

On changing the order of integration, the same
region ONMO is divided into two parts ONLO and
LNML with horizontal strips P’Q’ and P”Q” sliding

between y =0to y=1and y =1to y=+/2 respecti-
vely.

x=0
Fig. 4.15

B y X N2 -y X
whence ' —JjJ; ‘\/XiﬁydedY*'J; J; 7\/m dxdy

X _d(y. o%
Now the exp. x2—+yz_d_x(x ty )2
22
et
2-y?
| =J;)15X2 +y2);%1 dy +J;ﬁ gxz +y2)2 g dy
1 2
:(x/§—1)y—2 +3 2y—y?2§)r=1(\/§_1)
0
a a+m

Example 11: Evaluate LI e dydx by changing the order of integration.
a—.ja’—y’

=a |:| :a+.'a2—y2 d |:|
ion: Gi x
Solution: Given J;V:o cmamyTF de
Clearly in the region under consideration, strip PQ is horizontal with point P lying on the

curve x =a-./a®>—y? and point Q lying on the curve x =a+./a —y? and finally this strip
slides between two abscissa y = 0 and y = a as shown in Fig 5.16.
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Now, for changing the order of integration, the Y
region of integration under consideration is same but
this time the strip is P’Q’ (vertical) which is a function ©
of x with extremities P’ and Q’ at y = 0 and <
y =+/2ax —x? respectively and slides between x = 0 P : .
and x = 2a. R I
LR > x
= N2ax—x o, g‘) (a,Oo) P )B(a0)
Thus I = J’H ] ddex = [BE dx
0 0 0 0
2a 2a \
= [~J2ax = x? dx = [ v/x+/2a - x dx X +yP = 2ax
0 0
Take JX =+/2asin@ so that dx = 4asin® cos6 db, Fig. 4.16
Tt
Also, Forx:O,G:OandfOFXZZa,9=E
m
2
Therefore, | = [</2asin®3/2a - 2asin® 6 [4asin6 [tos dB
0
2 J2-1)n_ e
2 2-1)(2-1)n_ m
— gg2 2 2 = 832 [1(7_ =
8a£sm Bcos 6db Ha-2) 2 2
O m
2 — — — —
Husing] sin® cos'0d6 = (p-D(p=3).q=0@=3.. 5
5 0 E+DP+g=2) i 2 0
p and g both positive even integersH
34—y
Example 12: Changing the order of integration, evaluate [ [ (x+y)dxdy.
0 1
Solution: Clearly in the given form of integral, x y
changes as a function of y (viz. x = f(y) and y as an 4
independent variable changes from 0 to 3. e cw3
Thus, the two curves are the straight line x = 1 and » =3
the parabola, x =./4—-y and the common area under i C
consideration is ABQCA. S A
For changing the order of integration, we need to o
convert the horizontal strip PQ to a vertical strip P'Q’ s y=0
over which y changes as a function of x and it slides for o[ Al P @0 >X
values of x =1 to x = 2 as shown in Fig. 5.17.
Fig. 4.17

2[1,.(4-%) 2

E € AN
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4 5
= %xz —X—+8x+X——£x3|ﬁ

4 10 3

2(22 - ) —%(24 ~14)+8(2-1) +%(25 - 1) —%(23 -1)

_g_15,5,31_28_241
4 10 3 60
% aZ_yZ
Example 13: Evaluate [ | Iog(x2 +y2)dxdy(a>0) changing the order of integration.
0 0

Solution: Over the strip PQ (say), x changes as a function of y such that P lies on the curve

x =y and Q lies on the curve x = .,/a? —y? and
Y

a
i i = =— +
the strip PQ slides between y =0to ¥ N PP % .
Here the curves, x =y is a straight line }— - B[f‘f
x=0 Dy:OE 04N ~y=2
and x=2& gy=2al / e w3 2
V2 V2H &9 El ) y=0 X
i i a a © (()D) PPA
i.e. it passes through (0, 0) and " > H ’
2 2 x=a
Also x =.[a2-y? Qe x?+ y?=a’is acircle —/ ;
with centre (0, 0) and radius a. x=0 T
aQ Fig. 4.18

Ua
Thus, the two curves intersect at aﬁ fﬁ

On changing the order of integration, the same region OABO is divided into two parts

with vertical strips P’Q’ and P”Q” sliding between x = 0to x =2 and x :% to x=a

V2

respectively.

Whence, J'a/fgj' log(x* +y? mygdx +J' H[ Iog X2 +y )Elddex ..
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Now,

1 0
Ilog(x2 +y2)1dy = @og(xz +y2)Ey _J‘WZy Eydyg

Ist lind
Function Function
O y2+x2-x? 0O
=10 +y) =2 T v
0 1 0
=yl 2+y?) =2y + 2% [———ydyO
S G
:E/Iog(x2+y) 2y+2xza;tan‘1y% (2
On using (2),

an2 [

I, =J(') B/Iog(x2 + y2) -2y + 2x§an‘1§% dx

an2
:L Bklog 2x? - 2x + 2x tan™* 1ix

an2 h
:J' §<I092x2—2x+2x2§1x
[0]

a/ﬁ DT[ |:| a/J—
— 2 -t
—J(') xlog 2x dX+2D4 1D xdx

For first part, let 2x? = t so that 4x dx = dt and limitsare t =0 and t = a°.

a/\2
0 I |ogtad—+2D” HX;

0

2
DT[lD

+ Oa , (By parts with logt = logt - 1)

=5 (Iogt 1)

= Ioga2—1)+——— ..(3)

Agian, using (2),

)aZ —x2

, :J;/g ﬁ/log (Xz +y2)—2y + 2% %an*% dx ...(4)

a |:| — D
. :I 7 a® -x* loga® - 2Va - x? +2xtan—1ﬂ X
a2 [ ” ng



T
Let X = a sinB so that dx = acos® d6 and limits, ) to 5

= az(log a -
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asin®

I @Iog a -

2 2
I & (log & —2)coszed6+a2-[ 2sin@cosOtan(cotB)do
w4 w4

2 (1 +cos20) 0+ 22
.[Trl4 2 /4

_a B sm26ﬂ/ _
_?(Ioga2 2)% 1 n/4|:E GgﬂnZGdG

U

/2_ 2 cein2
\/ -a%sin? 0 +2asinOtan” wgacosede

sm26tan‘1§an — GEHdG

15

Ist lind
Fun. Fun.
a Om_mo_ 10 DD—COSZG w2, \[cos280
=% (loga?-2)g- - —o-= a2 -6 -1 98
2( g )le 40 2H8 2 am v Ve 5
a’ On_10_ a2 (2 an DD c0s200
I, ="-(loga®? -2) — - =—— cos206d6 9
2 ( g )D4 50 2 Joa ) 5 O is zero for both
the limits)
Ora? m? | &’ @ O v,
= log a? +— —-=loga’g——(sin2@).?
Heg 9% 4 T2 4 (sin20),
(ira? T & a 0, a
= loga? - — + < - % loga?g+ =
g 9% T4 Ty T, 9%
On using results (3) and (5), we get
=1 +1,

a2 T[a2 &0

|:|a2 2 2 2
:EZIOQa —? 2E+a?loga

=E2Ioga2 e T[g(logaz 1)

8

2 2 1
=T%(2Ioga—1)=m%aoga—§g

2 2 2
- L& T ogaz+

4

2

a2

48

Example 14: Evaluate by changing the order of integration. [ Jxe™*dxdy
00
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) =f(x)=x 2
Solution: We write I I xe ™ /Ydxdy = I ‘C 10 xe ™ /Vdxdy

Here first integration is performed along the vertical strip with y as a function of x and
then x is bounded between x =0 to X = co.

We need to change, x as a function of y and finally the limits of y. Thus the desired
geometry is as follows:

In this case, the strip PQ changes to P’Q’ with x as function of y, x, = y and X, = « and
finally y varies from 0 to .

Therefore Integtral

| = [ [xe™/Ydxdy
Oy

,_ B x=y, t=y?,0
Put x° =t so that 2x dx = dt Further, for O y
X =00, t=00

| :I‘”J‘j oty ﬂ dy, A ‘

P 77777 Q
—t/y R TR
St o | SRR
:J’ __@ -e YRy Fig. 4.19
(By parts)
1
== 1—d
SRR L
1 v
EE_ eV —g yg“
1
= 2H0)-(0-1)5= .
M dyd
: i -— X.
Example 15: Evaluate the integral .[0 IX iy y Y_ 0 s
SR RN S
N R !
Soluton: In the given integral, integration is performed first P Q |
with respect to y (as a function of x along the vertical strip say ol !
PQ, from P to Q) and then with respect to x from 0 to co. n N I
On changing the order, of integration integration is % 0 |
performed first along the horizontal strip P'Q" (x as a function e ‘(0 0 Y i
of y) from P'to Q" and finally this strip P'Q" slides between ’

the limitsy =0to y = co. Fig. 4.20
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0 | =L°°% EJ: dxEy

[ b e
_e”

g
-1 0 )

=-1(0-1)=1

1
a0

Jﬁf(

17

a
E le 16: Ch the order of int tion in the double int | .
xample ange the order of integration in the double integra J’Oz J' x,y)dxdy

2ax-x?

Y

y=2a

Solution: Clearly from the expressions given above,
the region of integration is described by a line which
starts from x = 0 and moving parallel to itself goes
over to x = 2a, and the extremities of the moving line o
lie on the parts of the circle x? + y? — 2ax = 0 the parabola x
y? = 2ax in the first quadrant.

For change and of order of integration, we need to
consider the same region as describe by a line moving
parallel to x-axis instead of Y-axis.

y2=23x

In this way, the domain of integration is divided 0 g)
into three sub-regions I, 11, 11l to each of which ’
corresponds a double integral.

Thus, we get

a f2ax —-Ja?-y?
dydx = dyd
ijmf(x,y) ydx ﬁﬁz/m f(x, y) dydx
Part |

f (%, y)dydx +L2af:/2a f(x,y) dydx

Part 11

a
+
I: a+\Ja?-y?
Part 11

Example 17: Find the area bounded by the lines y
=sin x, y =cos x and x = 0.

Solution: See Fig 5.22.
Clearly the desired area is the doted portion

(x-a)?+y=a°
Fig. 4.21

2a

where along the strip PQ, P lies on the curve
y =sinxand Q lies on the curve y = cos x and finally
the strip slides between the ordinates x = 0 and 1

X =—.
4

x| y=cosx

Fig. 4.22
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T

O ”dxdy J'Hojsxdygdx

nx
L1
4

= [ (cosx —sinx)dx
0

= (sinx + cosx)g'/4

_01 0,01 0
2 ﬁf H
(2
ASSIGNMENT 2
1. Change the order of integration II 2 +y > dxdy

2. Change the order integration in the integral I I f (xy)dxdy

aldosa

3. Change the order of integration in J' J' (x, »)dy dx
xtanQ

4. Change the order of integration in LI f(x, y)dxdy

4.4 EVALUATION OF DOUBLE INTEGRAL IN POLAR COORDINATES

0= r=4(8)
To evaluate [ [ f(r,0) dr de, we first integrate with respect to r between the limits
0=a r=q@®)
r= @) to r = Y(B) keeping O as a constant and then the . r=w@)
resulting expression is integrated with respect to 6 from 6 = 16=5 W
ato 6= D
Geometrical Illustration: Let AB and CD be the two "= ®6) 0
continuous curves r = @@0) and r = W(0) bounded between EX
the lines 6 = a and 6 = 3 so that ABDC is the required - > e
region of integration. P P\~
Let PQ be a radial strip of angular thickness &0 when OP A
makes an angle 6 with the initial line. 5-°
= . . . 8 =0 .
Here j:::é?)f(r,e)dr refers to the integration with 5 >
Fig. 4.23

respect to r along the radial strip PQ and then integration
with respect to 8 means rotation of this strip PQ from AC to CD.
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Example 18: Evaluate [[rsinBdrd6 over the cardiod r = a (1 - cos8) above the initial line.

Solution: The region of integration under consideration is the cardiod r = a(1 — cos 0) above
the initial line.

In the cardiod r=a(l-cosB);, for =0, r=00

T |
0=—, r=a,

5 OJ
6=m r=2ap

As clear from the geometry along the radial strip OP, r (as a function of 0) varies from
r=0tor=a(l - cosB) and then this strip slides from 8 = 0 to 6 = Tt for covering the area above
the initial line.

Hence 0= 12

T[|j=a(1—cose) 0
I = rdresin©de
|4 e

T[|:|r2 a(1-cos8)[]
=[Gs (sin06do
002 lo O

:a—]T 1-cos0) sin0de
-]
0

1- d‘ D fn+1 x) 0
2 3 Q

]
H COST[ —(1-cos0) H——[S 0] ==

Example 19: Show that IIr sinBdrdé = T where R is the semi circle r = 2acos6 above

the initial line. 8=Tr2
A
Solution: The region R of integration is the semi-circle /= 22c0s8
r = 2acos above the initial line. N
For thecircle r=2aco0s6,6=0 0O r= ZaB
el 8=0
i 0 (0, 0 ”
6=— 0 r=0 0 O (2a.0)
2 0 (@0)
Otherwise also, r=2acos® [ r2=2arcosO
X% + y2 = 2ax
Fig. 4.25

(X% - 2ax + a%) + y?> = a2
(x-a)}+ (y-0)>=a’



20

i.e., it is the circle with centre (a, 0) and radius r = a

g 2acos®
Hence the desired area [ rsin6drdo
00

g[gacose 5
= d 6de
{E | r rasm
2 r3 2acose[]
:J(; ﬂ? Hsinede
)
-1 V2 3 i
:? (2a)’ cos® BsinBdd
n+1
__8 3[ib 4 e n f
< OZ %0 usingJ'f(x)f'(x)dx:£
3
rdrdé

Example 20: Evaluate II over one loop of the lemniscate r2 = a2cos26.

[aZ + 12
Solution: The lemniscate is bounded for r =0 implying 6 = i%[ and maximum value of r is a.
See Fig. 5.26, in one complete loop, r varies from 0 to I =aJ/cos28 and the radial strip

slides between 9:—%[ to n

4
Hence the desired area

€0s26

/4 a
A = IH/J (e r) ———rdrdg
g
a c0s26
I a+r
w4

de
n/4

J'ng a’+a? cosZG —agle

/4
= I (\/2 cosf — 1)d6
-1/4
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J' J—cose 1)d6

gJ—S|nG G E

—2aHE = 2a gl

Example 21: Evaluate ”r3dr de, over the area included between the circles r = 2acos8 and
r=2bcos® (b < a).

Solution: Given r = 2acos® or P = 2arcosf
X% + y? = 2ax
(x+a)+(y-07?=4a
i.e this curve represents the circle with centre (a, 0) and radius a.

Likewise, r = 2bcosB represents the circle with centre (b, 0) and radius b.
We need to calculate the area bounded between the two circles, where over the radial

_ _ _ i : m, T
strip PQ, r varies from circle r = 2bcosf to r = 2acos and finally 8 varies from 5 03

LS

2acos® n
Thus, the given integral ”r3drd9 j [ ridrde 6= r=2bcos
T 2bcose
2 N R

/2 D’4 |ﬁacose /

-[ 2 H_%bcose

4J' %2&10056 2bcose) %de (o,oo)

= 4(«314 - b4)

cos*0deo r=2acoso

— g

N

Fig 4. 27

NI

8(«314 - b4)j cos*0do

3[1
BOTY
=% (a“—b“).

Particular Case: When r = 2cos6 and r=4cos@i.e,a=2and b =1, then
3 45 .
1== -b* 24 —14) = = units
3 nfat 1) = (2t -1¢) = XM units
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ASSIGNMENT 3

1. Evaluate [[rsinBdrd® over the area of the caridod r = a(1 + cos6) above the initial line.

a(1+cosB)

E—llnt I —IJ' rsinedrdeﬁ

2. Evaluate jjr3drd9, over the area included between the circles r = 2acos0 and r = 2b cosO
(b > a).

0
%I I=
0

3. Find by double integration, the area lying inside the cardiod r = a(1 + cos@) and
outsidethe parabola r(1 + cos6) = a.

Df=2bcose 3 u
dr dGD See Fig. 5.27 with a and b interchanged
2acose g.

\:l‘““‘:l

w2l a(l+cos6) o d

int: 2J' @[ﬂzse rdr%deﬁ

4.5 CHANGE OF ORDER OF INTERGRATION IN DOUBLE INTEGRAL IN POLAR
COORDINATES

I:[DEI:I

In the integral j:;gj:;:;é?) f(r.8)drde , interation is first performed with respect to r along a
‘radial strip’ and then this trip slides between two values of 6= o to 6 = f3.

In the changed order, integration is first performed with respect to 0 (as a function of r
along a ‘circular arc’) keeping r constant and then integrate the resulting integral with respect
to r between two values r = ato r = b (say)

Mathematically expressed as

Joe Joa)  (r.8)drde =1 = [Z)£70 £ (r,0) dodr

Example 22: Change the order of integration in the integral [ [>*°® f(r,0)dr d@

Solution: Here, integration is first performed with
respect to r (as a function of 0) along a radial strip I
OP (say) from r =0 to r = 2acos 0 and finally this

r=2acosdor 8=cos 1
2a

T
radial strip slides between 6 =0to 6= 5 R

Curve r=2acos® O r?=2arcos@
0 x>+y?=2ax 0 (x-al+y>’=a (0,0)
i.e., it is circle with centre (a, 0) and radius a.

On changing the order of integration, we have to
first integrate with respect to 0 (as a function of r) along
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the ‘circular strip’ QR (say) with pt. Q on the curve 8 =0 and pt. R on the curve 6 = cos‘lz—z71
and finally r varies from 0 to 2a.

I D:os‘l 0

2 2acos@ 2a
0 =1 ] f(r.0)drdé = IE r,G)dGEdr

0
Example 23: Sketch the region of integration J' J' r e)rdr de and change the order

2logf
of integration.
ae4 /2 r=p  8=1yr)

Solution: DoubleintegraIJ; J;Iogif(r ,0)rdrd® js igentical to i I f(r,6)rdrd®, whence

r=a  B8="fy(r)

integration is first performed with respect to 0 as a function of r i.e., 6 = f(r) along the

r
‘circular strip’ PQ (say) with point P on the curve 8= 2|095 and point Q on the curVe

T .
0= 5 and finally this strip slides between between r = a to r = ae™* (See Fig. 5.29).

The curve 6= 2IogL implies Q Iog—
a

r
2 —
2== or r=ae?

Now on changing the order, the integration is first performed with respect to r as a
function of 8 viz. r = f(6) along the ‘radial strip’ PQ (say) and finally this strip slides between

6=0to 9—— (Fig. 5.30).

J— vl C(ae””, 2)

/-6 = 2log rla
or (a, W2) B~

r=ae’?

Fig. 4.29 Fig. 4.30

2[] r:ae‘”zf o)rd Dde
O I _J;:o g::a (r.0)r o
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4.6. AREA ENCLOSED BY PLANE CURVES

1. Cartesian Coordinates: Consider the area bounded

by the two continuous curves
y = @Xx) and y = W(x) and the two ordinates x = a, x =
b (Fig. 5.31).

Now divide this area into vertical strips each of
width ox.

Let R(x, y) and S(x + dx, y + dy) be the two
neigbouring points, then the area of the elementary
shaded portion (i.e., small rectangle) = dxdy

But all the such small rectangles on this strip PQ
are of the same width &x and y changes as a function
of x from y = @(x) to y = W(x)

0,0

W(x) X
00 The area of the strip PQ = 5Lto > oxdy = 6X6Lt0 % dy = 6xj:(J£))dy
y — Y =0 ofx)

Now on adding such strips from x = a, we Y
get the desired area ABCD,

e W (2 y=b
[, d dx[. d dxd
2 000y =gy = [ axay
Likewise taking horizontal strip P’Q’ (say) y=a
as shown, the area ABCD is given by

y=b x= llJ

Jy=a i=dty) y axdy 5

Polar Coordinates: Let R be the region
enclosed by a polar curve with P(r, 6) and Q(r +
or, 8 + d8) as two neighbouring points in it.

Let PP’QQ’ be the circular area with radii OP
and OQ equal to r and r + &r respectively.

Here the area of the curvilinear rectangle is
approximately

= PP’ PQ = dr-rsin 8 = or [d6 = r dr &6.

If the whole region R is divided into such small
curvilinear rectangles then the limit of the sum
>rord0 taken over R is the area A enclosed by the
curve.

e, A—E}}OZrérée—jirdrde

560

Fig. 4.32

Example 24: Find by double integration, the area lying between the curves y = 2 — x? and

y =X

Solution: The given curve y = 2 — x? is a parabola.
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y =00
y =10 B0, 2
iy 9 it

y_ 2|:| +

y= 10 // Y
y= _25 { AL, 1)
i.e., it passes through points (0, 2), (1, 1), (2, — 2), \
-1, 1), (-2 -2). \

Likewise, the curve y = x is a straight line c % \

0(0, 0 X
y=0 0O X:OH ?// ©.0 iy !
P

y=1 0O x=1 |/
y=-2 0 x=-2§ )/

i.e., it passes through (0, 0), (1, 1), (- 2, - 2) y/

where in =-1

I o R |

where

Now for the two curvesy = x and y = 2 - x? to
intersect, x =2 - x2 or xX2+x-2=0.e., y=-2
x = 1, =2 which in turn implies y = 1, -2 D-2,-2)
respectively.

Thus, the two curves intersect at (1, 1) and Fig. 4.34
(-2, -2),
Clearly, the area need to be required is ABCDA.

—-x2 1

0 A=_j12Ej ddex=j(2—x2—x)dx

X -2

x3_x2ﬂ _9

= @2X == -= == units.
% 3 2H, 2

Example 25: Find by double integration, the area lying between the parabola y = 4x — x?

and the line y = x. [KUK, 2001]
Y
Solution: For the given curve y = 4x — X3,
x=00 y=00 Lt
x=10 ;)//:2D I
x=2 0 y=4 w2y
- - c@3, 3
x=30 y=30 A S
x=40 y=0{ [F
i.e. it passes through the points (0, 0), (1, 2), (3, 3) and ‘-
4, 0). o
Likewise, the curve y = x passes through (0, 0) and @9 (4,0
(3, 3), and hence, (0, 0) and (3, 3) are the common points. o X=3
Otherwise also putting y = x into y = 4x — x?, we get x=0

X=4x-x20 x=0, 3. Fig. 4.35
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See Fig. 5.35, OABCO is the area bounded by the two curves y = x and y = 4x — x?

3 4x-x?

O Area  OABCO=[ [ dydx
0 x

3 X —x2
=£@/é dx
2 3
:J- (4x—x2—x)dx: X——X—ﬁ == units
0 2 3H 2
. 3X
Example 26: Calculate the area of the region bounded by the curves Y = 242 and 4 y = x2
Solution: The curve 4y = x? is a parabola
where y=00 x=0, 2._ .
' Sie. h h(2 1 2, 1).
y=10 x=42 i.e., it passes through (-2, 1), (0, 0), (2, 1)
Likewise, for the curve Yy = 3
’ X2 +2
y=0 0O x=0 U

O
y=1 0 x=1210

0
x=-1 0 y=-10
Hence it passes through points (0, 0), (1, 1), (2, 1), (-1, -1).
Also for the curve (x* + 2) y = 3x, y = 0 (i.e. X-axis) is an asymptote.

For the points of intersection of the two curves Yy = x23i > and 4y = x°
3x X2
i - = 2 (2 -
we write 2+ 4 Or X (xc+2) =12x
Then x=0 0O y=0

x=2 0O y=1
i.,e. (0, 0) and (2, 1) are the two points of intersection.

Y
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The area under consideration,

Dy: 3x |:| |:| 3 2
— x2+2 _ X _xO
A= e I L B TR
3 x3 [f
= 2log(x2 +2) - X
Eog(x +2) 120
3 (10g6 - log2) - 2 = log 32
== — —-— = 2 —=
2(og 0g2) 5 =log 1

Example 27: Find by the double integration, the area lying inside the circle r = asin@ and
outside the cardiod r = a(1 - cos@).

Soluton: The area enclosed inside the circle r = asin@ and the cardiod r = a(1 — cos@) is shown
as doted one.
For the radial strip PQ, r varies from r = a(1 — cos@) to r = asin® and finally 0 varies in

i
between 0 to > 0=m/2

For the circle r = asin®
A /r= asind

6=00 r=00
OJ
G:ED r=ag ©
=m0 r:OE 6= e 6=0

Likewise for the cardiod r = a(1 — cos6);
6=00 r=0[
T 0
6=—0 r=ap
2 O
6=mn0 r=2ap

«—r=a(l-cosb)

Fig. 4.37

. T
Thus, the two curves intersect at 6 =0 and 6= E.

n
2 asin®

O A:J' J’ rdrd®

0 a(l-cosB)

asin®
/2 r2

[

_ (7’1 inZG—(1+cosze—ZCOSG) 6
=[" 3B H

dé

a(1-cos6)

2 /2
:%J' [-c0s26 -1+ 2cosB]dB, since (sin?6-cos?6) = -cos20
0
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) . 2
=a_D—sm26_e+25ineﬂ'/ -2 _md
2H 2 = 40

Example 28: Calculate the area included between the curve r = a(sec@ + cos8) and its
asymptote r = asecO .

1
Solution: As the given crave r = a(secf + cosf) i.e., ' = a@ﬁ + COSGE contains cosine terms

only and hence it is symmetrical about the initial axis.
Further, for 8 =0, r = 2a and, r goes on decreasing above and below the initial axis as 6

LS T
approaches to - and at 8 = r=o
Clearly, the required area is the doted region in which r varies along the radial strip from

LS
r = asecO to r = a(secO + cos@) and finally strip slides between 6= ) to 6= o

LY Y
2 a(secB+cosB)

O A= 2] ] rdrdo

asec6

2 [}2 sece+cose)

=Y gp
2(f 0 d
-af " peeeteg B e

= azj;n/ (0052 0+ 2)d6

00

r=a(sec6 + cosb)

_aJ- 2(5 +c0s20) de
0 2

Fig. 45.38

=a_2§e sin20 (12 _ 5ma?
2 2 H 4"

ASSIGNMENT 4
1. Show by double integration, the area bounded between the parabola y? = 4ax and x? =

.16 ,
—a.
day is 3

2. Using double integration, find the area enclosed by the curves, ¥ = x3 and y = x.

Example 29: Find by double integration, the area of laminiscate r? = a?cos20

Solution: As the given curve r? = a?cos20 contains cosine terms only and hence it is
symmetrical about the initial axis.
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Further the curve lies wholly inside the circle r = a,

since the maximum value of Jcos 8] is 1.
Also, no portlon of the curve lies between

0 SaL to 0= T and the extended axis.

4 .
See the geometry, for one loop, the curve 1S 0=0
bounded between 8=-" to T
4 4
L1
4 r=Ja’cos28
0 Area=2[ [  rdrd®
oo Fig. 4.39
/4 .o [3/C0s20
= 4J' r de
0o 2]

sin 2007
H2 H

=32

/4
= ZaZI c0s20d0 = 2a2
0

4.7 CHANGE OF VARIABLE IN DOUBLE INTEGRAL
The concept of change of variable had evolved to facilitate the evaluation of some typical
integrals.

Case 1. General change from one set of variable (x, y) to another set of variables (u, v).
If it is desirable to change the variables in double integral [ff(xy)dA by making
R
X =@u, v)and y = P(u, v), the expression dA (the elementary area dxdy in R,)) in terms of u
and v is given by

dA =

X,y oy,
Jau—vad“dv' = avi=is

J is the Jacobian (transformation coefficient) or functional determinant.

0 ”f(xy)dxdy ”F uv Hdudv

Case 2: From Cartesian to Polar Coordinates: In transforming to polar coordinates by means
of x =rcos@ and y = rsin®,

ox 0x
nyD ar 96| _| cosB sin®
Hr eH [dy 9dy| |-rsin® rcosf
or 00

0 dA=rdrde and [[f(xy)dxdy=[[F(r,6)rdrde
R R
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2
Example 30: Evaluate .LI(X*'V) dxdy \where R is the parallelogram in the xy plane with
vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u=x+y,v=Xx - 2y.

Solution: R,y is the region bounded by the parallelogram ABCD in the xy plane which on
transformation becomes R, i.e., the region bounded by the rectangle PQRS, as shown in the
Figs. 5.40 and 5.41 respectively.

v
Y
P(1,1) Q@4 1)
U
> B(3,1
(I ool I
1 !
N 3| 1S
o Ao X B
S(1,-2) R(4,-2)
Fig. 4.40 Fig. 4.41
) u=x+y u=1+0=1| .
With v=x-2y" A (1, 0) transforms to v=1-0=1[ "€ P(1, 1)

B(3, 1) transforms to Q(4, 1)
C(2, 2) transforms to R(4, — 2)
D(0, 1) transforms to S(1, — 2)

ax ax

Ja(x,y) - Ju ov - _1
and o(uv) |9y 9y| 3
ou ov

1
Hence the given integral '!qugdudv

:Jjﬁz%UZdudv = %Jf[v]l_z u2du

1 4
:§><(1+2)j1 u?du

s

3140
u :@:21units
3,H 3
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Example 31: Using transformation x + y = u, y = uv, show that
1 _1-x HY
I J’ e%adxdy = %(e -1).
0Jo

Solution: Clearly y = f(x) represents curvesy =0 and y = 1 — x, and x which is an independent

variable changes from x = 0 to x = 1. Thus, the area OABO bounded y
between the two curves y = 0 and x + y = 1 and the two ordinates 1
x =0and x =1 is shown in Fig. 5.42. B(0, 1)

On using transformation,
x+y=u 0O x=u(l-v)

2\ /x+ y=1

or. :\—|
y = uv 0 y=uv 9 : %
B |
Now point O(0, 0) implies 0= u(l - v) ..() 2N
and 0=uv .2 o P A
. (0,0) (1, 0)4
From (2), either u = 0 or v = 0 or both zero. From (1), we get v I
u=0v=1 Fig. 4.42
Hence (%, y) = (0, 0) transforms to (u, v) = (0, 0), (0, 1)
Point A(1, 0), implies 1 = u(1l - v) ..(3)
and 0=uv ..(4)

From (4) either u=0or v =0, If v = 0 then from (3) we have u =1, again if u = 0, equation
(3) is inconsistent.

Hence, A(1, 0) transforms to (1, 0), i.e. itself.

From Point B(0, 1), we get 0 = u(1-v) ...(5)
and 1=vu (6 oL & BLY
From (5), either u=0orv=1 -
If u =0, equation (6) becomes inconsistent.
If v = 1, the equation (6) gives u = 1.
Hence (0, 1) transform to (1, 1). See Fig. 5.43. o TP |awo
Hence

-X DZ = a(xly)
J’lj'l e yEdxdy =J’1J’1ue"dudv where J= =u
o Jo o Jo a(u,v)

:'r:u%r:e"dvadu :'rolu e —1)du=(e —1)%2

da Ly y2 —y\2 i .
Example 32: Evaluate the integral J' J'yz ;Tzz dxdy by transforming to polar coordinates.
0o )
4a

Fig. 4.43

=Ly
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2 Y o+
Solution: Here the curves X:Z_a or y? = 4ax is Y
N
. E -
parabola passing through (0, 0), (4a, 4a). I p i ZZ)‘ 4a
Likewise the curve x =y is a straight line passing
through points (0, 0) (4a, 4a).
Hence the two curves intersect at (0, 0), (4a, 4a). 4 6-0
= >X
In the given form of the integral, x changes (as a (0’8 51‘3’ 0)
2
function of y) from X = Z_a to x =y and finally y as an
independent variable varies from y = 0to y = 4a.
For transformation to polar coordinates, we take Fig. 4.44
a(x,y)
x=rcosB, y=rsinfand J=——<=r
Y a(r.0)
The parabola y? = 4ax implies r?sin0 = 4arcosO so that r(as a function of 8) varies from
r=0to r:4a_c_(zse and 6 varies from G:E to e:g

Therefore, on transformation the integral becomes

w2 =239 2 (c0s20 - sin?@
E snve ) craras
s Jo r?

4acos0

/2 2 T2
=I c0s26 %Dsm ® de
w4 2 %

= H/Z(l— 2sin? 6)@ c0s’8 g
_[n/4 2

sin*@

w2 (1-2sin?@)(1-sin?6) 00

= 8a? —
4 sin* 0

2 A -3sin20+2sin*0
= 8Efi[. Ei — Eije
4 sin* 0

174
= 8&12-[11/42 @osecze(l + cot? 6) — 3cosec?0 + 26

w2
=8a’[ [$ot?6 cosec’® - 2cosec?d + 2Hd0
/4
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w2 )
= 8a? é’ cot? Bcosec?0d6 + 2(cot e) +(20)20
/4 =

Let cot B = t so that — cosec? 6 d8 = dt.  Limits for e_z, :15
i O

0=—,t=00

2 O

]

=8 _2+L[|:|

1 2@

=8a?

0l [
—t2dt +2 0 1)+ =8a
5 )+ 28 %@
20T _
[p

50
30

Example 33: Evaluate the integral _[g‘_[Jm(x2 + y2) dxdy by changing to polar coordinates.

x/a

Solution: The above integral has already been discussed under change of order of integration
in cartesian co-ordinate system, Example 7.

For transforming any point P(x, y) of cartesian coordinate to polar coordinates P(r, 6), we

take X = r cos6, y = r sin® dJ=dxw=r
dKe X =T C0Su, y =T SIno an a(r,e)

The parabola y? == |mplies r25in29:M ie., r%sinze—@azo
a a

a
0 either r=0 or r= C(_)se
asin?@
.. _X
Limits, for the curve Y = 3
BA 1 A (a 1)
8=tan?Y =tan1 22 = tan1 =
X OB a
d for th y=% 6=0
and for the curve a 5@0)
p=tant9=T
a 2
. ) coso |
Here r (as a function of 6) varies from 0 to asinZ6
1 Fig. 4.45
-1 LIS
and 8 changes from tan a to X
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Therefore, the integral,

a./x/a
[ (¢+y)
0 x/a
/2 O @cosze @
transforms to. 'Z.ﬁanﬂ%@ R 3dr%de

Ecose
J’ J’ sin? Edrde
cot(a)JO

_1¢”? _cos*s
4 Joota a4(sin4 9)2
T,
1 2
0 | =—= [ cot*8(1+cot?8)cosec’8dd
4a cot?a
Let cot O = t so that cosec?8 df = dt (- 1) and 8 =cot*al t=a{
T 0
0=— Ot=0
2 B
1 0
=—[t*(1+t?)(-dt
O 17 { 1+ 2)(-dt)

1 Paepmget 3 Y0
= a“J:g +1t @t—4a4H§+7%

Oa , a0

'=Byo *28E

n
Example 34: Evaluate _[_[xy(x2 +y?)2dxdy over the positive quadrant of x? + y? = 4,
supposing n + 3 > 0. [SVTU, 2007]

Solution: The double integral is to be evaluated over the area enclosed by the positive
quadrant of the circle x> + y? = 4, whose centre is (0, 0) and radius 2.

Let x = rcos6, y = rsing, so that x? + y> = r2. v
i i s
Therefore on transformation to polar co-ordinates, 0=2 /Cirde r=2

0=1/2 r=2 » P
I :J;):O L:O rcos@rsin® r"|J|drde, L

1
-
O

w2 2 ) U alxy
:J(') J(')(r””dr)smecosede, EJ_ a((r 6)
Tr/2|:|rn+4

J' Hﬁ—%smecosede Fig. 4.46
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n
n+4 2

sinBcos6do
4
0

_2m4 lgin? fz(x)
g2 b e [T 2
2n+3

:(n+4),(n+3)>0.

ma
Example 35; Transform to cartesian coordinates and hence evaluate the [Jr°sin@cos@drde
00

Solution: Clearly the region of integration is the area enclosed by the circle r =0, r = a
between 6=0to 6 =1

T _a
Here I :J;J;r%inecosedrde

T _a
:J'J'rsineﬁrcoseﬁrdrde Cirder=a
0 JO

On using transformation x = r cos®, y = rsiné,
y=+a>-x?

I —J' J' xy dxdy
L e
a2 -2
=858,

xdx
2] (a —x)dx

As x and x3 both are odd functions, therefore net value on integration of the above integral
is zero.

Fig. 4.47

(azx - x3)dx = 0.

FR Y

_ -1
1.e. | = 2

ASSIGNMENTS 5
Evaluate the following integrals by changing to polar coordinates:

(1) II (X +y?)dxdy (2) J:Laﬁdxdy
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a \/az——Xz X+
3 J [ dxdy (4) I I ¢ b laxay
—-a-— aZ XZ

4.8 TRIPLE INTEGRAL (PHYSICAL SIGNIFICANCE)
The triple integral is defined in a manner entirely analogous to the definition of the double
integral.
Let F(x, y, z) be a function of three independent variables X, y, z defined at every point in
a region of space V bounded by the surface S. Divided V into n elementary volumes &V,, 8V,,
., 0V, and let (x,, y,, z,) be any point inside the rth sub division &V,. Then, the limit of the

sum
z

z F(Xr yrlzr)é vV, ..(1) Z=1(% YY) ™

if exists, as n - o« and 8V, - 0 is called the
‘triple integral’ of R(X, y, z) over the region V, and
is denoted by

I”F(x,y,z)dv ..(2)

In order to express triple integral in the
‘integrated’ form, V is considered to be sub-
divided by planes parallel to the three coordinate
planes. The volume V may then be considered as o
the sum of a number of vertical columns extending
from the lower surface say, z = f,(X, y) to the upper
surface say, z = f,(x, y) with base as the elementary
areas 0A, over a region R in the xy-plance when all
the columns in V are taken.

On summing up the elementary cuboids in the
same vertical columns first and then taking the sum
for all the columns in V, it becomes

ZﬁF(XUyﬂL)&ﬁA .3

with the pt. (X, Y,, z,) in the rth cuboid over the element dA,.
When 8A, and 0z tend to zero, we can write (3) as

‘[52 By F(x.y.z dzEdA

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions.

4.9. EVALUATION OF TRIPLE INTEGRALS

For evaluation purpose, I\J;IF(X’Y'Z)dV ..(1)

is expressed as the repeated integral



